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Cascade and breakdown in scale-free networks with community structure
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The cascade failures in scale-free networks with community structure are studied and cascade propagation of
such networks with different modularity parameters is simulated. It is found that the network with small
modularity is much easier to trigger cascade failures than that of the larger one. Furthermore, different removal
strategies have some what large effects on the cascade failures aftereffect. The simulations also show that
larger modularity and reserve capacity coefficient will delay the breakdown caused by a cascade of network.
This is particularly important for such real networks with community as traffic networks, distribution networks,

and electrical power grids.
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A lot of interest has been focused on the characterization
of various structural and locational properties of networks,
such as degree distribution, clustering coefficient, small
world effects and so on. Among the others, an important
property common to many networks is the presence of com-
munity structure. Community structure means many net-
works in nature or social networks can be divided into some
groups such that the connections within each group are
dense, while connections between groups are sparse. For in-
stance, in social networks some individual can be part of a
tightly connected group or of a closed social elite, others can
be completely isolated, while some others may act as bridges
between groups [1]. In very great degree, structure deter-
mines the characteristic and function of networks [2]. The
finding of community structure provides a powerful tool for
understanding the growth mechanisms and the functioning of
the complex network.

In addition, the behaviors and dynamics in complex net-
works have recently attracted the attention of researchers in
different areas. Among them we recall the robust against
random failure and intentional attacks of nodes or edges, the
effect of cascade, etc. Cascade failures are initiated when a
heavily loaded node (edge) is lost for some reason, and the
load on that node (edge) (i.e., the flow passing through it)
must be redistributed to other nodes (edges) in the network.
This redistribution may cause other nodes (edges) to exceed
their capacity causing them also to fail. Hence the number of
failed nodes (edges) increases, propagating throughout the
network. In particularly serious cases the entire network is
affected. Cascading failures have been observed in many real
complex networks. The largest blackout in U.S. history took
place on 14 August 2003, a typical example of cascading
failure in electrical power grids [3]. Resistance of networks
to the removal of nodes or edges, due either to random
breakdowns or to intentional attacks, has been studied in
Refs. [4-8]. Such studies have focused only on the static
properties of the network showing that the removal of a
group of nodes altogether can have important consequences
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[9]. However, there are few works about the cascade in
scale-free networks by considering the community structure.
In this paper, based on the recently addressed problem of
“community structure” and “cascade” in complex networks,
we intend to fill this gap by proposing a cascade failure
model based on the scale-free networks with community
structure, and the effects of cascade with community struc-
ture is studied.

I. GENERATE SF NETWORKS WITH COMMUNITY
STRUCTURE

Scale-free networks can be generated with various meth-
ods. The first model is given by Albert and Barabdsi (BA)
[10] which they identify as being necessary for a network to
have the scale-free property, (i) growth—the network grows
over time; (ii) preferential attachment (PA)—nodes with a
high degree are more likely to create edges to new nodes
than ones with a low degree.

Inspired by these two mechanisms mentioned above and
the previous work by Yan [11], we propose the generation
model as follows: Starting with ¢ communities denoted as
U,,U,,...,U,. And for each community with a small num-
ber (m,) of initial nodes, at every time step we add into each
community a new node with m (<mg) edges that link the
new node to n (n<m) different nodes within this community
and m-n different nodes within other ¢—1 communities
already present in the system according to PA rule,
II(k;)=k;/Zk; which means the probability II that the new
node will be connected to node i depends on the degree k; of
vertex i. In our study, we find the equilibrium status of sys-
tems is asymptotic stability [12]. And the result shows that
the scaling behavior is independent on its initial topology
(the number of nodes m) and the variation of m and n value.
So the results will not change qualitatively following
changes in the parameters of the network generation. Addi-
tionally, the degree distribution p(k) of nodes of the local
network (inside each community), as well as the global net-
work have stronger stabilities in the growing process with PA
growing mechanism and follow the power law with exponent
3, i.e., p(k)ok3, (see Fig. 1).
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FIG. 1. Double-logarithm global-degree and local-degree (inset)
distribution of a network with N=520, my=m=4, n=1, and c=4.
The graph corresponds to the average 30 realizations of the
networks.

Based on a previous measure of assortative mixing [13],
Newman and Girvan proposed a measure of the quality of a
particular division of a network, which they called the modu-
larity as follows [14]: Q=3,(h,,—a?), where a,=2,h,, de-
notes the row (or column) sums which represent the fraction
of edges that connect to nodes in community r and 4,,, is the
fraction of edges in the original network that connect nodes
in subset r with nodes in subset w. In a given network in
which edges fall between nodes without regard for the com-
munities they belong to, h,,=a,a, can be obtained. In our
network model, we can adjust the ¢ value to get networks
with various strength QO of community structure. The larger
the value of Q is, the most accurate a partition into commu-
nities will be. If the number of within-community edges is no
better than random, we will get Q=0. Values approaching
Q=1, which is the maximum, indicate strong community
structure [14]. In this paper, the edge whose two nodes are in
a same community is defined as the local edge and the bridge
edge represents the edge whose two nodes belong to differ-
ent communities.

II. CASCADE FAILURE MODEL BASED ON SF
NETWORKS WITH COMMUNITY STRUCTURES

In our cascade failure model, each edge is assigned with a
given capacity according to the betweenness of edges to
handle the traffic. Initially the network is in a stationary state
in which the load at each edge is smaller than its capacity.
Removing an edge will change the balance of load and leads
to a redistribution of loads over other edges. This process is
called the initial attack. A redistribution of loads will trigger
the overload failures of other edges and eventually a large
drop in the network performance which is called the propa-
gation of cascade. The main differences of our work with
respect to previous models [9,15-17] are as follows: (i) The
removal strategies are divided as inner removal (removal of
the local edge with the maximum load) and inter removal
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(removal of the bridge edge with the maximum load). (ii)
When the cascade arrives at the stationary state, a new traffic
flow is added into the network in order to make heavier
damage, attacking the network leads to a new cascade; itera-
tion of this process until the breakdown of network. (iii) Not
only the decrease in the network efficiency [18], but also the
change of average shortest path (D) defined as the mean of
geodesic lengths over all couples of nodes [19] is proposed
to quantify the damage caused by a cascade.

The urban transit and road network are found to display
the properties of scale free networks [20,21]. Therefore, here
we represent an urban traffic network as undirected graph
G=(V,K) where V is the set of nodes, and K is the set of
edges. G is described by NXN the adjacency matrix {e;}.
We define N as the size of the network. Then, the network
efficiency is [17]

1 1
EG) N(N - l)i:&%G dij’
where d;; indicates the efficiency of the most efficient path
between i and j.

In a real traffic network, each edge has a design capacity
denoted as L;;(0) according to the load between origin i and
destination j. For simplicity, the load L;;(r) on the edges be-
tween i and j at time ¢ is assigned depending on the between-
ness of this edge o;,(t), where o;;(¢) is defined as the total
number of most efficient paths passing through the edge ¢;; at
time z. Following Ref. [15], we also assume the maximum
handle capacity H;; of edge e;; is proportional to its design
capacity L;;(0). That is:

Hij = aLij(O)’

where « is a tolerant parameter. In traffic systems, by setting
traffic control methods, the actual load passing the edges will
be the multiples of the design capacity, and this multiple is
called reserve capacity coefficient [22]. Here, « is a tolerant
parameter, which corresponds to the reserve capacity coeffi-
cient.

III. SIMULATION RESULTS

We performed a numerical simulation with a total of
N=120 nodes, and a given scale-free network with commu-
nity generated by BA. That is, at each time step, we connect
a new node with three nodes in a selected community and
connect it to a node in another community. The selection of
size N=120 is based on two reasons: (i) This relatively small
system can be seen as simulating the backbone of a city’s
urban traffic network, and this does provide a sufficiently
sized network to gain statistically significant attributes; (ii)
The whole cascade process will cost too much running time
of a computer in order to make the traffic system breakdown.
The evolving network with our model can be seen from
Fig. 2.

Here we focus on a cascade triggered by two removal
strategies: Inter removal and inner removal. Furthermore, the
influence on the cascade damage of a network with different
modularity is studied.
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In our paper, we obtain the different modularity
0=0.14,0.15,0.16 by adjusting the parameters m and n over
15 average (Q=0.14: m=3, n=1; Q=0.15: m=4, n=1,
0=0.16: m=6, n=1). From Fig. 3, we can see that the effi-
ciency decreases under cascade and attacking, while the av-
erage shortest path increases initially and then decreases. For
a larger value of modularity Q, the efficiency is also higher,
however, the average shortest path keeps opposite when the
time step is small. With the time step increase, the average
shortest path become higher for the larger value of modular-
ity. Figure 3 also shows that larger modularity can delay the
phase transition time and then delay the breakdown time of
the network. For different modularity 0=0.14,0.15,0.16 in
Fig. 3(a), the evolving time of network breakdown trigged by
a cascade are about 420, 580, and larger than 600, respec-
tively. And from Fig. 3(b), we can also see that the larger
jumps for inter removal occur at 220, 300, and 520 steps. But
for inner removal, it occurs at 200, 280, and 440 time steps.
In the simulation, the breakdown of network will be delayed
more than 100 time steps if the modularity increase is 0.01,
which can be understood easily. The higher the modularity
is, the smaller the fraction of edges among communities in
total edges will be, and the more homogeneous the network
is. Therefore, the scale-free characteristics become more in-
conspicuous within a community, and cascade failures in a
small modularity network more easily happen. This is con-
sistent with some recent works on cascade failures in com-
plex networks based on different dynamical models [15],
where it has been shown that cascade failures are much less
likely to happen in a homogeneous network than in a hetero-
geneous network. Therefore, the network with larger modu-
larity will take on a good robustness and resistance to the
damage of a cascade. Additionally, the same result can be
draw for different removal strategies. Figure 3 also indicates
that different removal strategies have a small effect on the
efficiency of a network, but bring large changes of the aver-
age shortest path. We know the efficiency is the sum of the
effective path. Only a few edges are connected among com-
munities, so the impact on the efficiency for two removal
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FIG. 2. (Color online) A
simple scale-free network with
communities generated by our
model. In this case there are four
communities, N=120, my=m=4,
n=1, and c=4.
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FIG. 3. The global efficiency E(G) (a) and the average shortest
path (D) (b) of the network after cascading and attacking, as a
function of the evolving step with different modularity for different
removal strategies (for every graph, the top one corresponds to the
inter removal and bottom one represents the inner removal),
respectively.

066111-3



WU, GAO, AND SUN

PHYSICAL REVIEW E 74, 066111 (2006)

400

300

@ 200}

100

- Inter-removal
¢ Inner-removal

FIG. 4. The changes in the size of the largest

0 L 1 L x
(a o 50 100 150 200 250

350 cluster S (a) and the clustering coefficient C (b)
as a function of step (time) for inter removal (dot)

0.4 T T T T

0.3

>®°° .
& we] 00805

T T
« Inter-removal
¢ Inner-removal

and inner removal (diamond). The graph corre-
sponds to the average 30 realizations of the
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strategies is almost equivalency, and the modularity will de-
termine and affect the function of the network.

When edges are removed from a network, clusters of
nodes whose links to the system disappear may be cut off
(fragmented) from the main cluster. To better understand the
impact of attacks on the network structure, we investigate
this fragmentation process. We measure the size of the larg-
est cluster, S, shown as a fraction of the total system size,
when a fraction of the edges are removed either inner re-
moval or inter removal. For both inner removal and inter
removal S decreases after the network starts to break down,
eventually S changes as a function of step as shown in Fig.
4(a). One can see that for the inner removal the breakdown is
slower compared to the inter removal. Another important el-
ement is average clustering coefficient C. As seen in Fig.
4(b), C is a decrease with the time evolution, and the variety
for two removal strategies is not very obvious. When time
steps exceed 150, Fig. 4 indicates that two removal strategies
have the same largest cluster. The rough functional forms are
quadratic and linear for S and C, respectively (S=3.37
—81¢+490 and C=-0.000 717+0.28).

Different modularity can display different structures and
functions of many real-world networks. Figure 5 is the time
evolving of modularity for two removal strategies. One can
see that the modularity tends to decrease with the evolution
of time. Furthermore, there have small fluctuations during
the evolving process. The reason is that, at time 7, the
modularity will decrease if the local edge is removed
caused by a cascade. However, the removal of the bridge
edge will lead to the increase of modularity. Compared
with inter removal, inner removal will cause a drop of the
modularity. The rough functional form of Fig. 5 for the
modularity and time steps is cubic. Actually, we also obtain
approximate fitting function by experiments as follows:
0=-2.15X107+8.84 X 10782-0.000 13¢+0.146.

Figure 6 shows the variety of efficiency as a function of
the reserve capacity coefficient « in the cascading and break-
down of a scale-free network with communities for inter re-
moval and inner removal, respectively. Clearly, for two

cases, we can see that the damage is smaller for larger values
of a. Small efficiency indicates the network is difficult to
realize its function. Therefore, Fig. 6 also indicates the larger
a value can delay the breakdown of the network. Different
removal strategies will cause the variety of efficiency, espe-
cially for larger value of «. But for the same « value, the
efficiency decreases with the evolving time. Additionally, the
damage of two removal strategies is almost equivalent when
a=1.05, 1.25, and 1.5. Another finding is that when the cas-
cade step is small, the effects of reserve capacity coefficient
a on efficiency are not clear. But with the time evolving, its
effects become more and more obvious. For a given time
step (i.e., £=200 or 300), when a=1.5, the efficiency of net-
work can be increased 13% compared with a=1.05. There-
fore, the finding is very important for the traffic network
especially for the urban jamming road networks. For ex-
ample, we can adjust the reserve capacity coefficients based
on the real traffic status to avoid the whole network collapse
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FIG. 5. The time evolving of modularity for two removal strat-

egies (inter removal and inner removal). The value « is 1.3 in the
simulation.
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FIG. 6. The changes of E(G) as a function of reserve capacity
coefficient a for inter removal (dashed line) and inner removal
(solid line) in different cascade steps (dot: step=35; plus: step=>50;
star: step=100; diamond: step=200; inverted triangle: step=300).

triggered by a congested route. This result is significantly
important for the design of traffic networks.

In this paper we simulate the cascade failures in scale-free
network with community structure, in which the local degree
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and global degree all obey power-law distributions. Addi-
tionally, we focus on the study of cascade with different re-
moval strategies, inter removal and inner removal, to under-
stand the influence of the cascade in such networks. Our
result is thus that different removal strategies on a single
important edge and different modularity of network may trig-
ger different cascades of overload failures capable of dis-
abling the network almost entirely. Furthermore, the network
becomes more vulnerable to the small modularity and re-
serve capacity coefficient. These results suggest that to avoid
cascade failures in the scale-free network with community,
large modularity and reserve capacity coefficients are fea-
sible. We hope this work might shed some light on the analy-
sis and control of cascade failures and its propagation in
real-world complex networks.
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